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Abstract. In this paper we present a novel approach to exploiting ILP
through the use of resource-flow computing. This model begins by ex-
ecuting instructions independent of data flow and control flow depen-
dencies in a program. The rest of the execution time is spent applying
programmatic data flow and control flow constraints to end up with a
programmatically-correct execution. We present the design of a machine
that uses time tags and Active Stations, realizing a registerless data path.

In this contribution we focus our discussion on the Execution Window
elements of our machine, present Instruction Per Cycle (IPC) speedups
for SPECint95 and SPECint2000 programs, and discuss the scalability
of our design to hundreds of processing elements.

1 Introduction

A number of ILP studies have concluded that there exists a significant amount
of parallelism in common applications [9, 15, 17]. So why haven’t we been able to
obtain these theoretical speedups? Part of the reason is that we have not been
aggressive enough with our execution model.

Lam and Wilson showed us that if a machine could follow multiple flows
of control while utilizing a simple branch predictor and limited control depen-
dencies (i.e., instructions after a forward branch’s target are independent of the
branch), a speedup of 40 could be obtained on average [9]. If an Oracle (i.e., per-
fect) branch predictor was used, speedups averaged 158. Research has already
been reported that overcomes many control flow issues using limited multi-path
execution [2, 15].

To support rampant speculation while maintaining scalable hardware, we
introduce a statically ordered machine that utilizes instruction time tags and
Active Stations in the Execution Window. We call our machine Levo [16]. Next
we will briefly describe our machine model.
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2 The Levo machine model

Figure 1 presents the overall model of Levo, which consists of 3 main compo-
nents: 1) the Instruction Window, 2) the Execution Window, and 3) the Memory
Window.
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Fig. 1. The Levo machine model.

The Instruction Window fetches instructions from an instruction memory,
performs dynamic branch prediction, and generates predicates. Instructions are
fetched in the static order in which they appear in the binary image (similar to
assuming all conditional branches are not taken). By fetching down the not-taken
path, we will capture the taken and not taken paths of most branch hammocks [3,
8]. We exploit this opportunity and spawn execution paths to cover both paths
(taken and not taken) for hard-to-predict hammocks.

Some exceptions to our static fetch policy are:

1. unconditional jump paths are followed,
2. loops are unrolled dynamically [14] in the Execution Window, and
3. in the case of conditional branches with far targets, 3 if the branch is strongly

predicted taken in the branch predictor, begin static fetching from its target.

We utilize a conventional two-level gshare predictor [11] to guide both in-
struction fetch (as in case 3 above), as well as to steer instruction issue. Levo
utilizes full run-time generated predicates, such that every branch that executes
within the Execution Window (i.e., a branch domain 4), is data and control
independent of all other branches.
3 Far implies that the branch target is farther than two-thirds the size of the Execution

window size. For a machine with 512 ASs, this distance is equal to 341 instructions.
4 A branch domain includes the static instructions starting from the branch to its

target, exclusive of the target and the branch itself [15].
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Levo is an in-order issue, in-order completion machine, though it supports a
high degree of speculative resource-flow-order execution. The Execution Window
is organized as a grid; columns of processing elements (PEs) are arranged in a
number of Sharing Groups (SGs) per column. A SG shares a common PE (see
Figure 2).
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Fig. 2. A Levo Sharing Group.

Levo assigns PEs to the highest priority instruction in a SG that has not been
executed, independent of whether the instruction’s inputs or operands are known
to be correct (data flow independent), and regardless of whether this instruction
is known to be on the actual (versus mispredicted) control path (control flow
independent). The rest of the execution time is spent applying programmatic
data flow (re-executions) and control flow constraints (squashes), so as to end
up with a programmatically-correct execution of the program. Instructions are
retired in order, when all instructions in the column have completed execution.

Each sharing group contains a number of Active Stations (ASs); instructions
are issued in static order to ASs in a column. Each issued instruction is assigned
a time tag, based on its location in the column. Time tags play a critical role in
the simplicity of Levo by labeling each instruction and operand in our Execution
Window. This label is used during the maintenance/enforcement of program
order in our highly speculative machine.

Our ASs are designed after Tomasulo’s reservation stations [13]. There is one
instruction per Active Station. Levo ASs are able to snoop and snarf 5 data from
buses with the help of the time tags. ASs are also used to evaluate predicates,
and to squash redundant operand updates (again using time tags).

ASs within a Sharing Group compete for the resources of the group, including
the single pipelined PE and the broadcast bus outputs. Each spanning bus is

5 Snarfing entails snooping address/data buses, and when the desired address value is
detected, the associated data value is read.
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connected to adjacent Sharing Groups. The spanning bus length is constant and
does not change with the size of the Execution Window; this addresses scalability
of this busing structure.

A column in the Execution Window is completely filled with the sequence of
instructions as they appear in the Instruction Window. During execution, hard-
ware runtime predication is used for all forward branches with targets within
the Execution Window. Backward branches are handled via dynamic loop un-
rolling [14] and runtime conversion to forward branches.

2.1 Levo Execution Window Datapath

Levo’s spanning buses play a similar role as Tomasulo’s reservation stations’
Common Data Bus. Spanning buses are comprised of both forwarding and back-
warding buses. Forwarding buses are used to broadcast register, memory and
predicate values. If an AS needs an input value, it sends the request to earlier
ASs via a backwarding bus and the requested data is returned on a forwarding
bus.

An AS connects to the spanning buses corresponding to the position of the
AS in the column. Each AS performs simple comparison operations on the time
tags and addresses broadcast on the spanning buses to determine whether or not
to snarf data or predicates. Figure 3 shows the structure for this function of an
AS.

2.2 Scalability

So far we have described a machine with ASs all connected together with some
small number of spanning buses. In effect, so far there is little difference between
a Levo spanning bus and Tomasulo’s Common Data Bus. This microarchitecture
may reduce the number of cycles needed to execute a program via resource flow,
but having the buses go everywhere will increase the cycle time unacceptably.

The Multiscalar project demonstrated that register lifetimes are short, typi-
cally spanning only one or two basic blocks (32 instructions at the high end) [1,
5]. Based on this important observation, we partition each bus into short seg-
ments, limiting the number of ASs connected to any segment; this has been set
to the number of ASs in a column for the results presented in this paper.

We interconnect broadcast buses with buffer registers; when a value is trans-
mitted on the bus from the preceding bus segment the sourcing AS needs to
compete with other ASs for the bus segment. Local buffer space is provided.
Thus, there can be a one or more cycle delay for sending values across bus
segments.

In Levo there is no centralized register file, there are no central renaming
buffers nor reorder buffer. Levo uses locally-consistent register values distributed
throughout the Execution Window and among the PEs. A register’s contents are
likely to be globally inconsistent, but locally usable. A register’s contents will
eventually become consistent at instruction commit time. In Levo, PEs broadcast
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their results directly to only a small subset of the instructions in the Execution
Window, which includes the instructions within the same Sharing Group.

2.3 Time Tags and Renaming

A time tag indicates the position of an instruction in the original sequential
program order (i.e., in the order that instructions are issued). ASs are labeled
with time tags starting from zero and incrementing up to one minus the total
number of ASs in the microarchitecture. A time tag is a small integer that
uniquely identifies a particular AS.

Similar to a conventional reservation station, operand results are broadcast
forward for use by waiting instructions. With ASs, all operands that are for-
warded after the execution of an instruction are also tagged with the time tag
value of the AS that generated the updated operand. This tag will be used
by subsequent ASs to determine if the operand should be snarfed as an input
operand that will trigger the execution of its loaded instruction. Essentially all
values within the Execution Window are tagged with time tags. Since our mi-
croarchitecture can also allow for the concurrent execution of disjoint paths, we
also introduce a path ID.

The microarchitecture that we have devised requires the forwarding of three
types of operands. These are register operands, memory operands, and instruc-
tion predicate operands. These operands are tagged with time tags and path IDs
that are associated with the ASs that produced them. The information broad-
cast from an AS to subsequent ASs in future program ordered time is referred
to as a transaction, and consists of :

– a path ID
– the time tag of the originating AS
– the identifier of the architected operand
– the actual data value for this operand

Figure 3 shows the registers inside an active station for one of its input
operands. The time-tag, address, and value registers are reloaded with new values
on each snarf, while the path and AS time-tag (column indices) are only loaded
when the AS is issued an instruction, with the path register only being reloaded
upon a taken disjoint path execution (disjoint execution will be discussed later).

This scheme effectively eliminates the need for rename registers or other spec-
ulative registers as part of the reorder buffer. The whole of the microarchitecture
thus provides for the full renaming of all operands, thus avoiding all false de-
pendencies. There is no need to limit instruction issue or to limit speculative
instruction execution due to a limit on the number of non-architected registers
for holding those temporary results. True flow dependencies are enforced through
continuous snooping by each AS.

2.4 Disjoint Execution

Our resource flow Execution Window can only produce high IPC if it contains
the stream of instructions that will be committed next. In an effort to insure that
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we can handle the ill-effects of branch mispredictions, we have utilized disjoint
execution to handle the cases where branch prediction is wrong.

In Figure 2 we showed a Sharing Group containing both a mainline and
disjoint (D-path) set of ASs. The D-path ASs will share the common PE with
the mainline execution, though will receive a lower priority when attempting
to execute an instruction. The disjoint path is used to hide potential latencies
associated with branch mispredictions. The disjoint path is copied from a main-
line path in a cycle when the instruction loading buses are free. The disjoint
path will use a copy of the mainline path, though will start execution from a
point after a branch instruction (if the branch was predicted taken), or at a
branch target (if the branch was predicted as not taken) in the mainline exe-
cution. For branches that exhibit a chaotic behavior (changing from taken to
not-taken often), spawning disjoint paths should be highly beneficial. For more
predictable branches (e.g., a loop-ending branch), we can even reap some benefit
by executing down the loop exit path.

In [7], we discuss how to select the best path to spawn disjoint paths. In this
work, we always start spawning from the column prior to the current column
being loaded, and spawn up to 5 paths (3 for 4 column configurations). If we
look at one of the D-columns, the code and state above the D-branch (the point
at which we spawned a disjoint path) is the same as in the mainline path. The
code is the same for the entire column (static order). The sign of the predicate
of the D-branch is set to the not-predicted direction of the original branch. All
other branch predications in the column follow those of the same branches in
the mainline column.

If the D-branch resolves as a correct prediction, the disjoint path state is
discarded, and the D-column is reallocated to the next unresolved branch in
the mainline. If the D-branch resolves as an incorrect prediction, the D-column
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is renamed as the mainline column, the mainline part in columns after the D-
branch’s column is kept, and D-path results are re-issued. Execution resumes
with the new mainline state; new D spawning can begin again.

3 ILP Results

To evaluate the performance of the ideas we have just described, we have devel-
oped a trace-driven simulation model of the Levo machine. The simulator takes
as input a trace containing instructions and their associated operand values.
We include results for 5 programs taken from the SPECint2000 and SPECint95
suites, using the reference inputs. Our current environment models a MIPS-1
ISA with some MIPS-2 and MIPS-3 instructions included which are used by the
SGI compiler or are in SGI system libraries. While we use a specific ISA in this
work, Levo is not directly ISA dependent.

For our baseline system (BL), we assume a machine that is bound by true
dependencies in the program, and does no forwarding or backwarding of values.
The machine follows a single path of execution (no disjoint paths are spawned).
We compare the baseline to a variety of Levo systems that implement resource
flow (RF). We also show results for a machine that uses D-path spawning (D).
We study the effects of different memory systems, assuming both a conven-
tional hierarchical memory system (CM) and a perfect cache memory (PM).
All speedup results are relative to a baseline system that uses a conventional
memory (BL-CM).

Table 1 summarizes many of the machine parameters we use in the set of
results presented. The table includes the parameters for the conventional data
memory system. Table 2 shows the 5 different machine configurations studied
and presents our baseline IPC numbers which we will use to compare against.

Feature Size Comment

Fetch width 1-column each cycle

L1 I-Cache 100% hit

Branch predictor 2-level gshare multi-ported
1024 PAg 4096 GPHT

L1 D-Cache 32KB 2-way 32B line 4-way interleaved

L1 D-hit time 1 cycle

L1 D-miss penalty 10 cycles

L2 and Memory 100% hit

Forwarding/Backwarding unit delay 1 cycle

Bus delay 1 cycle

Table 1. Common model simulation parameters.

Figure 4 shows the relative speedup in IPC for our five benchmarks, for the six
machine configurations described. All results are relative to our Baseline system
with a conventional data cache memory hierarchy, as described in Table 2. The
s8a8c8 configuration provides the highest IPC. The first 3 configurations have
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Machine SGs per ASs per Columns gzip gap parser bzip go
Config Column SG BL-CM BL-CM BL-CM BL-CM BL-CM

IPC IPC IPC IPC IPC

s4a4c4 4 4 4 2.3 2.4 1.8 1.9 1.7

s8a4c4 8 4 4 2.8 3.5 2.4 2.5 2.4

s8a4c8 8 4 8 2.9 3.9 2.5 2.7 2.5

s8a8c8 8 8 8 4.1 4.4 2.7 2.9 2.7

s16a8c4 16 8 4 3.1 3.9 2.5 2.6 2.5

s8a4c16 8 4 16 3.1 4.2 2.5 2.5 2.5

Table 2. Levo machine configurations and BL-CM IPC values for the 5 benchmarks.
s = SGs per column, a = ASs per SG and c = Columns.

fewer hardware resources; s16a8c4 does not have enough columns to hide latency
and while s8a4c16 has enough columns, with fewer ASs per PE, there is lower
PE utilization, and thus a lower IPC is obtained.

While we can see that resource flow provides moderate gains when used alone,
we do not see the power of this model until we employ D-paths to hide branch
mispredictions. For parser and go, we obtain speedups of 3 to 4 times when using
D-paths, with IPCs greater than 10 in 3 out of 5 benchmarks. We should expect
go to obtain the most benefit from D since it possesses the highest percentages
of conditional branch mispredictions. Parser shows some performance loss for
RF-PM when compared to our baseline. Much of this is due to bus contention,
which can be remedied by adding more buses.

4 Discussion and Summary

Probably the most successful high-IPC machine to date is Lipasti and Shen’s
Superspeculative architecture [10], achieving an IPC of about 7 with realistic
hardware assumptions. The Ultrascalar machine [6] achieves asymptotic scala-
bility, but only realizes a small amount of IPC, due to its conservative execution
model. The Warp Engine [4] uses time tags, like Levo, for a large amount of spec-
ulation; however their realization of time tags is cumbersome, utilizing floating
point numbers and machine wide parameter updating.

Nagarajan et al. have proposed a Grid Architecture that builds an array of
ALUs, each with limited control, connected by a operand network [12]. Their
system achieves an IPC of 11 on SPEC2000 and Mediabench benchmarks. While
this architecture presents many novel ideas in attempt to reap high IPC, it
differs greatly in its interconnect strategy and register design. They also rely on
a compiler to obtain this level of IPC, whereas Levo does not.

In this paper we have described the Levo machine model. We have illustrated
the power of resource flow and especially D-path execution. We have been suc-
cessful in obtaining IPCs above 10.

We still believe that there remains substantial ILP to be obtained. In Table 3
we select the configuration that obtained the best D-path result (8,8,8) and
show IPC speedup (relative to our D-path result in Figure 4) using an Oracle
predictor [9]. As we can see, there still remains a lot of IPC that can be obtained
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Fig. 4. IPC comparison for baseline perfect memory (BL-PM), resource flow conven-
tional memory (RF-CM), resource flow perfect memory (RF-PM), D-paths conven-
tional memory (D-CM) and D-paths perfect memory (D-PM). All speedup factors are
versus our baseline assuming conventional memory (BL-CM).

through improved control flow speculation. We plan to look at spawning dynamic
paths (versus the static path approach described in this work).
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